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Abstract

For models used to describe multi-dimensional marked point processes with covari-

ates, the high number of parameters typically involved and the high dimensionality of

the process can make model evaluation, construction, and estimation using maximum

likelihood quite difficult. Conditions are explored here under which parameters gov-

erning one set of coordinates or covariates affecting a multi-dimensional marked point

process may be estimated separately. The resulting estimates are, under the given

conditions, similar to maximum likelihood estimates.

Key words: maximum likelihood estimation, intensity function, weighted least squares esti-

mation, consistency, Poisson process, conditional intensity.

1 Introduction.

Given a multi-dimensional point process, it is well-known that if the coordinates in one

dimension are independently drawn from some fixed density, then the parameters governing

this density may be estimated separately from the parameters governing the rest of the

process. In point process models for earthquake occurrences, for instance, the distribution of

earthquake magnitudes is typically modeled as constant over time, and under this assumption

the estimation of the earthquake size distribution is especially straightforward. When one or

more dimensions of a point process have coordinates whose entries are i.i.d. draws from a fixed

distribution, the process is called separable; see e.g. Rathbun (1996) or Schoenberg (2004)

for examples. This paper investigates more general conditions under which components of a

point processes can be estimated separably.
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The separability of a component in a point process model is very important in that if a

parameter or collection of parameters may be estimated individually, this greatly facilitates

model building, fitting, and assessment. For multi-dimensional models, each separable coor-

dinate may be plotted individually to suggest functional forms for the model, and the fit of

the model is also much more readily inspected due to the reduction in the number of dimen-

sions. Further, while maximum likelihood estimates have well-understood properties such

as consistency and asymptotic efficiency under rather general conditions, in practice max-

imum likelihood typically requires an iterative optimization procedure which, when many

parameters are being estimated, can fail to converge to a global maximum and which often

relies heavily on starting values, the choice of which can be very problematic. Estimation is

greatly facilitated when only a few parameters are estimated at a time. Hence it is worth

exploring situations in which point process models can be decomposed so that the certain

parameters can be estimated separably, i.e. without optimizing over all values of the other

parameters.

Another motivation for the study of separable estimation of point process parameters is in

the case of missing covariates or dimensions. Even in point process applications where many

coordinates are recorded with each point and where many covariates are analyzed, there are

typically some variables that are excluded from the analysis yet which could potentially affect

the estimation of the conditional intensity of the point process. It is therefore important

to investigate conditions under which the omission of these variables will not substantially

affect the maximum likelihood estimates of parameters in a point process model, and this is

precisely what is meant by separability in the current paper.
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Tests for separability of point process models have been proposed by Schoenberg (2004).

Here, we focus on the estimation of separable point process models, including processes

with covariates, and address the question of what types of models have components that

may be estimated separately. Rathbun (1996) noted that models that are multiplicative in

all dimensions may be estimated separably, and methods for estimating such models are

detailed by Baddeley and Turner (2000). The present paper extends this to a much wider

class of models. Our main results may roughly be summarized as follows: for models that are

multiplicative in the dimensions of the point process, and either multiplicative or additive

in the covariates, the individual components of the model may, under general conditions, be

estimated separately. The resulting estimates will be equivalent, or in the case of Theorem

4.1 below will converge in probability, to the ordinary maximum likelihood estimates.

2 Preliminaries

Suppose N is a point process whose domain D is a measurable product space, D = D0 ×

D1 × . . .×Dk, equipped with Lebesgue measure µ. For instance, in the case of earthquake

occurrences, D might be the product of a portion of space-time and a mark space. Suppose

that each of the domains Di is measurable and is equipped with a Lebesgue measure µi, and

that in particular D0 = [0, T ] is a portion of the real (time) line.

For any point x = (t,m1, m2, ...,mk) in D, let λ(t,m1, m2, ...,mk) denote the condi-

tional intensity of the point process. That is, following Brown et al. (1986) or Merzbach

and Nualart (1986), beginning with a filtration Fx on D, we define F1
x as the filtration

generated by the F -adapted, left-continuous processes, and say a process is predictable if
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it is F1-adapted. Then the conditional intensity (or 1-intensity) λ is any non-negative,

F∞-predictable process such that for any measurable subset S of D1 × D2 × . . . × Dk,

N([0, t] × S) −
∫ t
0

∫
S λ(u, m1, m2, . . . ,mk)dµ0dµ1 . . . dµk if an F -martingale. Note that each

coordinate mi may be a multi-dimensional vector, or a point in the arbitrary measurable

space Di.

Suppose that λ is governed by a parameter vector θ from some compact parameter space

Θ, and that Θ is a product of compact parameter spaces Θ0, Θ1,. . . , Θk, Θk+1. We assume

in what follows that Θk+1 is a compact subset of R+, but each of the other spaces Θi may

be multi-dimensional.

To ease notation, it will be useful to introduce the following conventions. For any in-

teger i in {0, 1, ..., k}, let D−i represent the product space D0 × D1 . . . × Di−1 × Di+1 ×

Di+2 × . . . × Dk, and let µ−i denote Lebesgue measure on D−i. Similarly, let m−i =

(m1, m2, . . . ,mi−1, mi+1, mi+2, . . . ,mk), and let θ−i denote the parameter vector

{θ0, θ1, . . . , θi−1, θi+1, θi+2, . . . , θk}.

We say λ is completely separable if

λ(t,m1, . . . ,mk; θ) = θk+1λ0(t; θ0)λ1(t,m1; θ2) . . . λk(t,mk; θk), (1)

where θi ∈ Θi, and each λi is F1-predictable. θk+1 simply represents a multiplicative con-

stant; if this is not desired, Θk+1 may simply be taken to be the point set 1. In some

applications, it may be unreasonable to suppose that the process is completely separable.

However, more generally one might suppose that a given component is separable, as in the

following definition.

We say λ (or equivalently, the point process N) is separable in mark mi if the 1-intensity
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may be written

λ(t,m1, . . . ,mk; θ) = θk+1λi(t,mi; θi)λ−i(t,m−i; θ−i). (2)

Note that mark mi may be multiplicative and yet may influence the conditional rates λi and

λ−i at future times and that the distribution of mark mi may vary with t and may depend

on any facets of the history of the process. The key feature in (??) is that the parameter θi

only influences the process λi.

For point processes in general, the loglikelihood for the full parameter vector θ may in

general be written (Daley and Vere-Jones 1988):

L(θ) =
∫
D

log λ(x; θ)dN −
∫
D

λ(x; θ)dµ. (3)

The parameter vector θ̂ = (θ̂1, . . . , θ̂k, θ̂k+1) is called the maximum likelihood estimate (MLE)

of θ.

For a point process thought to be separable in mark mi, one may instead consider max-

imizing the partial loglikelihood

L̃i(θi, θk+1) =
∫
D

log[θk+1λi(t,mi; θi)]dN − θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt. (4)

The parameters θ̃i, θ̃k+1 maximizing L̃ may be called partial maximum likelihood estimates

(PMLEs).

3 PMLEs for Multiplicative Models.

For processes that are separable in a certain mark, when estimating the parameters govern-

ing the component of the rate related to this mark, the MLE and PMLE are often quite
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similar. Some conditions under which the two estimates are exactly the same are given in

the following elementary result.

Lemma 3.1. Let N be a point process whose 1-intensity λ is separable in mark mi as

in (??). Suppose that both L(θ) and L̃i(θi) are differentiable with respect to θi, and that θ̃i

is the unique value of θi satisfying ∂L̃i

∂θi
= 0. Suppose also that (at least) one of the following

three conditions holds, for some scalar γ:

∫
D−i

λ−i(t,m−i; θ−i)dµ−i = γ, ∀θ−i (5)

∫
Di

λi(t,mi; θi)dµi = γ, ∀θi (6)

∫
D

λ(t,m1, . . . ,mk; θ)dµ = θk+1

∫
D0

∫
Di

λ̃(t,mi; θi)dµidt = γ, ∀θ. (7)

Then θ̃i = θ̂i.

Proof.

When λ is separable in mark mi, (??) becomes

L̃i(θi, θk+1) = N(D) log(θk+1) + [
∫

D
log λi(t,mi; θi) + log λ−i(t,m−i; θ−i)]dN

− θk+1

∫
Di

λi(t,mi; θi)dµi

∫
D−i

λ(t,m−i; θ−i)dµ−i.

Hence

0 =
∂L(θ)

∂θi

=
∂

∂θi

∫
D

log λi(t,mi; θi)dN − θk+1
∂

∂θi

∫
Di

λi(t,mi; θi)

[∫
D−i

λ−i(t,m−i; θ−i)dµ−i

]
dµi.
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By assumption, (θ̃k+1, θ̃i) is the unique solution to the equation

0 =
∂

∂θi

L̃(θ)

=
∂

∂θi

∫
D

log λi(t,mi; θi)dN − θk+1

∫
D0

∫
Di

∂λi(t,mi; θi)

∂θi

dµidt. (8)

Therefore under condition (??),
(
θ̂k+1γ, θ̂i

)
is the unique solution to (??). If (??) or (??)

holds, then neither
∫
D0

∫
Di

λi(t,mi; θi)dµidt nor
∫
D0

∫
Di

λi(t,mi; θi)
[∫

D−i
λ−i(t,m−i; θ−i)dµ−i

]
dµidt

depends on θi, so both θ̃i and the MLE θ̂i must uniquely satisfy ∂
∂θi

∫
D log λi(t,mi; θi)dN = 0.

2

Equations (??)-(??) are not impossibly restrictive. The following three examples illus-

trate conditions under which these assumptions may be met.

Example 3.1. The Epidemic-Type Aftershock Sequence (ETAS) model of Ogata (1988;

1998) is a type of branching model that is widely used in seismology. The marks include

the magnitudes of the earthquakes and may also include the spatial locations of the events.

According to the ETAS model, the conditional rate λ is separable with respect to magnitude,

and can be written λ(t,m,x) = λ1(t,x)f(m), where f(m) is the magnitude density, which

is posited not to change over time. Thus the LHS of (??) becomes
∫

f(m; θm)dm = 1, since

f is a density. As noted in Schoenberg (2004), it is important to clarify that the magnitudes

of prior events may influence the conditional intensity subsequently, but the process may

nevertheless be separable in magnitude provided (??) holds, i.e. if the parameters governing

the magnitude distribution do not influence the other marginal distributions of the process.

Example 3.2. In the analysis of wildfires, one important mark is the amount of area
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burned, and it has often been noted that the density of area burned may change from year

to year. This density (assuming it exists) may depend on the fuel age distribution and other

dynamic conditions. It nevertheless must always integrates to unity, and models have been

proposed (see e.g. Peng et al. 2005) which posit that the parameters governing this density

do not interact with the other parameters governing the other distributions of the process in

violation of (??). Hence (??) is satisfied for such models with mi the burn area of a fire (or

equivalently (??) is satisfied where m−i is the burn area, and mi contains information on all

other marks).

Example 3.3. When implementing maximum likelihood estimation algorithms in prac-

tice, one must verify that the optimization routine does not converge to a local maximum.

A common way of checking whether the routine’s output is reasonable is by ensuring that

the integral term in (??) is approximately equal to the number N(D) of observed points,

since E
∫
D

λ(x; θ)dµ = E
∫
D

dN = EN(D). Similarly, in maximizing the partial likelihood,

one would typically ensure that θk+1

∫
D0

∫
Di

λi(t,mi; θi)dµidt is approximately equal to N(D).

If one imposes the constraint that each of these integrals must equal N(D), then (??) is

satisfied with γ = N(D).

Example 3.4. In some models, spatial background rates are fitted by kernel smoothing

of a certain fixed subset of n points (e.g. Ogata 1988, Schoenberg 2003), and the bandwidth

of the kernel density may be estimated by maximum likelihood of by maximizing the partial

likelihood governing only the spatial coordinates. In such situations, if the spatial domain
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has no boundary, or if boundary effects are negligible, or if a correction is used in the fitting

so that each of the n points identically contributes a value of one to the total background

rate, then as in the previous example, (??) holds with γ = n.

Recall that in the parameterization of each component λi(t,mi; θi), the parameter θi need

not be a scalar, but may instead be a vector in Rd. (Similarly, mi may also be vector-valued.)

Recall also that although λi(t,mi) must be F -predictable, it may depend on covariates,

including external observations and/or functionals of the history of the point process. We

turn now to the estimation of the parameters governing the effect of these covariates on λ.

The next results indicate conditions under which the parameters governing each covariate

may be estimated separately.

Suppose that the parameterization of one particular component λi(t,mi; θi) of the 1-

intensity can be decomposed into a product of terms

λi(t,mi; θi) = f1(X(t,mi); β1)f2(Y (t,mi); β2), (9)

where θi = (β1, β2), and X and Y are predictable processes. Such a model may arise for

example when f1 represents the effect on the rate caused by one collection of covariates,

and f2 represents the effect of another group of covariates. Note that X and Y need not be

scalars, but may be vector-valued or may take values in an arbitrary measurable space.

Let H1(x), H2(y), and H(x, y) denote the empirical cumulative distribution functions on

D of X(t,mi), Y (t,mi), and of the pair (X, Y ), respectively. Of particular interest is the

special case where H has the multiplicative form

H(x, y) = H1(x)H2(y). (10)
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Let β̌1 denote the maximum likelihood estimate when the parameter (vector) β1 is esti-

mated separately, i.e. the value of β1 maximizing

Ľ(β1) :=
∫

D0

∫
Di

log[θ0f1(X(t,mi); β1)]dN(t,mi)− θ0

∫
D0

∫
Di

f1(X(t,mi); β1)dµidt. (11)

Theorem 3.2. Suppose that the conditions of Lemma 3.1 hold and that λi is multiplica-

tive as in (??). Suppose that Ľ is differentiable with respect to β1, and that there exists a

unique solution (θ̌0, β̌1) satisfying dĽ
dβ1

= 0. If H has the multiplicative form (??), then β̌1 is

the MLE of β1.

Proof. Reparameterizing the second term in L̃i, one may write

θ0

∫
D0

∫
Di

λi(t,mi; θi)dµidt = θ0

∫
x

∫
y

f1(x; β1)f2(y; β2)dH(x, y)

= θ0

∫
x

f1(x; β1)dH1(x)
∫
y

f2(y; β2)dH2(y).

Hence β̃1 satisfies

0 =
d

dβ1

L(θ̃i)

=
d

dβ1

∫
D0

∫
Di

log f1(X(t,mi); β̃1)dN(t,mi)− θ0

∫
y

f2(y; θ2)dH2(y)
d

dβ1

∫
x

f1(x; θ1)dH1(x).

One may similarly reparameterize Ľ(β1) to obtain

d

dβ1

Ľ(β1) =
d

dβ1

∫
D0

∫
Di

log f1(X(t,mi); β1)dN(t,mi)− θ0
d

dβ1

∫
x

f1(x; β1)dH1(x).

Thus (θ0

∫
y

f2(y; θ2)dH2(y), β̃1) is the unique solution to the equation d
dβ1

Ľ(β) = 0. Therefore,

using Lemma 2.1, β̂1 = β̃1 = β̌1.
2

Example 3.5. In the log-linear or exponential family of models considered by Baddeley

and Turner (2000; 2005), the conditional rate is purely multiplicative with respect to all
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marks and covariates, and thus satisfies conditions (??) and (??). According to Theorem

3.2, if two of the covariates X and Y satisfy (??), then the parameters governing their

components in the conditional rate λ may equivalently be estimated separately.

4 Additive Models

The result in Theorem 3.2 may seem intuitively obvious given condition (??), but note that

this condition does not necessarily imply that the effects of X and Y may be estimated

separately. For additive models, for instance, this result of Theorem 3.2 does not gener-

ally hold. For a simple example, suppose that N is a 1-dimensional point process whose

conditional intensity has the form λ(t) = αX(t) + βY (t), and suppose that X(t) = 1 and

Y (t) = t, for all t. Then (??) holds, but the estimate β̌ obtained by separately estimating

the coordinate f2(Y (t)) = βY (t) is simply the MLE of β for the model λ(t) = βt, which is

obviously different from the MLE of β for the model λ(t) = α + βt.

This Section explores conditions under which parameters may be estimated separately for

the case of components of λ that are additive rather than multiplicative. As an alternative

to the product form in (??), suppose instead that λi is parameterized as a sum of functions

of the covariates X and Y . That is,

λi(t,mi; θi) = f1(X(t,mi); β1) + f2(Y (t,mi); β2), (12)

where θi = (β1, β2), and X,Y are predictable processes.

Consider the maximum likelihood estimate β́1(T ) when the parameter (vector) β1 is

estimated individually, using observations on [0, T ] × D1 × . . . × Dk. That is, β́1(T ) is the
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value of β1 maximizing

Ĺ(T )(β1) :=

T∫
0

∫
Di

log[f1(X(t,mi); β1)]dN(t,mi)−
T∫

0

∫
Di

f1(X(t,mi); β1)dµidt. (13)

General conditions for the convergence in probability of the MLE θ̂ to the true parameter

vector θ∗ have been given by a variety of authors; see for instance Theorem 2 of Ogata (1978)

for stationary one-dimensional processes, or Theorem 1 of Rathbun (1996) for more general

multi-dimensional point processes. In the following result, it is assumed that N satisfies

such conditions. Further conditions are provided under which the estimate β́1 is consistent

as well, as T approaches infinity.

Theorem 4.1. Suppose that N satisfies the conditions for Theorem 2 of Ogata (1978).

Suppose also that N satisfies the conditions of Lemma 2.1, and that λi has the additive

form (??), where f1 and f2 are continuous in β1 and β2, respectively. Suppose also that

E
∫ ∫

|λ(t,mi; θ
∗
i ) log λ(t,mi; θi)|dµidt < ∞ and E

∫ ∫
|λ(t,mi; θ

∗
i ) log f1(X(t,mi); β1)|dµidt <

∞, and that there exists an open neighborhood U = U1 × U2 × . . .× Uk of the true param-

eter vector θ∗, where U1 is a neighborhood of the true parameter β∗1 , such that for θ in U ,

1
T

T∫
0

∫
Di

f2(Y (t,mi); β2)dµidt and 1
T

T∫
0

∫
Di

λ(t,mi;θ
∗
i )f2(Y (t,mi);β2)

f1(X(t,mi);β1)
dµidt converge to zero in probabil-

ity for θ in U . Then β́1(T ) is a consistent estimate of β1.

Proof. First, note that by martingale convergence (see e.g. Theorem A3.4 of Daley and

Vere-Jones 1988 or 3.3 of Lipster and Shiryaev 1977), for any θi = (β1, β2),

1

T

 T∫
0

∫
Di

log λ(t,mi; θi)dN(t,mi)−
T∫

0

∫
Di

log λ(t,mi; θi)λ(t,mi; θ
∗
i )dµidt

−→ 0 a.s.
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and

1

T

 T∫
0

∫
Di

log [f1(X(t,mi); β1)] dN(t,mi)−
T∫

0

∫
Di

log [f1(X(t,mi; β1)] λ(t,mi; θ
∗
i )dµidt

−→ 0 a.s.

Thus we can write

L̃
(T )
i (θi)

T
=

1

T

T∫
0

∫
Di

log [f1(X(t,mi); β1) + f2(Y (t,mi); β2)] dN(mi, t)

− 1

T

T∫
0

∫
Di

[f1(X(t,mi); β1) + f2(Y (t,mi); β2)] dµidt

∼ 1

T

T∫
0

∫
Di

log [f1(X(t,mi); β1) + f2(Y (t,mi); β2)] λ(t,mi; θ
∗
i )dµidt

− 1

T

T∫
0

∫
Di

[f1(X(t,mi); β1) + f2(Y (t,mi); β2)] dµidt,

where by a ∼ b we mean that a− b converges to zero a.s. as T →∞.

Similarly,

Ĺ(T )(β1)

T
=

1

T

T∫
0

∫
Di

log[f1(X(t,mi); β1)]dN(t,mi)−
1

T

T∫
0

∫
Di

f1(X(t,mi); β1)dµidt

∼ 1

T

T∫
0

∫
Di

log[f1(X(t,mi); β1)]λ(t,mi; θ
∗
i )dµidt− 1

T

T∫
0

∫
Di

f1(X(t,mi); β1)dµidt.

Hence, for θ ∈ U,
L̃

(T )
i (θi)

T
− Ĺ(T )(β1)

T
=

1
T

T∫
0

∫
Di

λ(t,mi; θ
∗
i ) [log (f1(X(t,mi); β1) + f2(Y (t,mi); β2))− log (f1(X(t,mi); β1))] dµidt

− 1
T

T∫
0

∫
Di

f2(Y (t,mi); β2)dµidt + o(T ).

But by assumption, 1
T

T∫
0

∫
Di

f2(Y (t,mi); β2)dµidt −→ 0 in probability. Furthermore, ab-

breviating f1(X(t,mi); β1) and f2(Y (t,mi); β2) to f1 and f2, respectively, for the moment,

log(f1 + f2)− log(f1) = log(
f1 + f2

f1

) ≤ f1 + f2

f1

− 1 =
f2

f1

,
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using the well-known relation log(x) ≤ x−1, for positive x (see e.g. Abramowitz, 1964). Thus,

since by assumption 1
T

T∫
0

∫
Di

λ(t,mi; θ
∗
i )f2/f1dµidt converges to zero in probability, the same is

true of L̃
(T )
i (θi)/T − Ĺ(T )(β1)/T and this convergence is uniform in θi due to the continuity of

f1 and f2 and the compactness of Θi. Thus for any ε > 0, | sup
θ∈U

L̃
(T )
i (θi)/T − sup

θ∈U
Ĺ(T )(β1)/T |

and | sup
θ/∈U

L̃
(T )
i (θi)/T − sup

θ/∈U

Ĺ(T )(β1)/T | are each less than ε/2 with probability going to one,

as T →∞.

By Lemma 3.1, β̃1 = β̂1. By relation 3.6 of Ogata (1978), for any ε > 0, there exists T1

such that for T > T1,

sup
θ∈U

L̃
(T )
i (θi) ≥ sup

θ/∈U

L̃T
i (θi) + εT.

Hence with probability going to one as t →∞,

sup
β1∈U1

Ĺ(T )(β1)
T

− sup
β1 /∈U1

Ĺ(T )(β1)
T

> sup
θ∈U

L̃
(T )
i (θi)

T
− ε/2− sup

θ/∈U

L̃
(T )
i (θi)

T
− ε/2 ≥ 0.

2

Example 4.1. The conditions on f1 and f2 in Theorem 4.1 may be satisfied when

f2 is small, both in absolute terms and relative to f1. Let f1 and f2 be shorthand for

f1(X(t,mi); β1) and f2(Y (t,mi); β2), respectively. Suppose that, for θ in a neighborhood U

of θ∗, |λ| is bounded in absolute value by some value b with probability going to one, and

that
∫

Di

f2dµi and
∫

Di

f2/f1dµi converge to zero in probability. Then so do 1
T

T∫
0

∫
Di

f2dµidt and

1
T

T∫
0

∫
Di

λ(t,mi;θ
∗
i )f2

f1
dµidt, satisfying the last conditions in Theorem 4.1.

Example 4.2. If f1 is bounded away from zero and |λ| is bounded above, then the

conditions on f1,f2 in Theorem 4.1 simply amount to the convergence to zero in probability

of 1
T

T∫
0

∫
Di

f2dµidt. In particular, if
∫

Di

f2dµi →p 0, then these conditions in Theorem 4.1 are

trivially satisfied.
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5 Discussion

While the result in Lemma 3.1 is hardly surprising, Theorems 3.2 and 4.1 imply that param-

eters governing individual covariates in multi-dimensional point process models may often

be estimated separately. Indeed, the parameters governing a given covariate’s effect on the

conditional intensity will hardly be influenced by the omission of other covariates, even if

these other covariates may influence the conditional intensity overall and may even interact

with the given covariate in an additive or multiplicative way. The conditions in both results

essentially mandate that the interactions between covariates are not too large.

As mentioned in the Introduction, these results may have implications for point process

estimation. It is typically far easier (and faster) to obtain an SMLE β̌ or β́ than to search

over values of all parameters in order to find the value β̂ maximizing the full likelihood.

In addition, the results in Sections 3 and 4 may have implications for model building as

well. It is typically extremely difficult to construct realistic models for multi-dimensional

point processes with many covariates. Ideally such models should be based on well-understood

physical principles and subject-matter expertise, of course. However, in some situations

empirically-based models may be sought, and one method for constructing such a model

would be to investigate individually the distribution of each coordinate, and the individual

contribution to the conditional intensity of each (or perhaps small collections of) covariates.

These marginal distributions of the process could then be estimated separately, and the

parametric forms for each could readily be inspected for goodness-of-fit. The results above

suggest circumstances under which a model may be thus constructed and estimated.
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